
CSE 599 Report: IaC Lifting and Cloud State
Identification

ChunYuan Hsu
University of Michigan
Ann Arbor, MI, USA

chyhsu@umich.edu

I. LIFTING

Our work focuses on Infrastructure-as-Code (IaC) lifting,
a process that converts existing cloud deployments (brown-
field infrastructure) into declarative IaC programs such as
Terraform. While IaC tools are well designed for forward
deployment, lifting is inherently challenging due to the se-
mantic gap between low-level cloud states and high-level IaC
abstractions.

In this project, we study practical IaC lifting by mapping
cloud-provider-specific JSON representations to Terraform re-
source blocks, attributes, and dependencies, with a primary
emphasis on Azure infrastructure. We systematically analyze
lifting challenges including non-1:1 resource mappings, nested
resources, missing or redundant JSON fields, implicit depen-
dencies, and attribute normalization.

Using extensive real-world examples—such as virtual ma-
chines, DNS, CDN, Kubernetes, and AI services—we catego-
rize lifting scenarios into distinct structural cases. Both cloud
states and Terraform configurations are modeled as graphs,
where nodes represent resources and edges represent depen-
dencies or references. Based on these graph representations,
we derive mapping rules that translate cloud nodes and edges
into Terraform resource blocks and inter-resource references.

Our lifting workflow incrementally improves output qual-
ity through multiple stages, including brute-force generation,
documentation-guided refinement, forward learning of map-
ping rules from deployments, and program-level refactoring.
Validation is performed using Terraform-native commands
such as init, validate, and plan. Overall, this work empha-
sizes engineering feasibility, detailed case analysis, and rule
extraction grounded in observed cloud behavior.

II. LILAC

Lilac is an existing research project that also targets the
IaC lifting problem, aiming to build an automated, cloud-
agnostic, and correctness-aware lifting system. Unlike ad-hoc
or rule-based tools, Lilac seeks to generalize lifting across
cloud providers by learning reusable lifting rules from forward
IaC deployments.

The core idea behind Lilac is to observe how IaC programs
are translated into cloud states during deployment, and then
infer the reverse mapping. Lilac incrementally deploys IaC
programs, queries cloud provider APIs, and compares the
resulting cloud states with the original IaC configurations.

From these observations, Lilac extracts lifting rules that map
cloud resources, attributes, and dependencies back to IaC
constructs.

Lilac adopts a neurosymbolic design. Large Language
Models (LLMs) are used for exploration tasks such as API
selection, documentation retrieval, and pattern discovery, while
symbolic techniques and IaC-native verification are employed
to enforce correctness, reproducibility, and safety. Verification
steps include equivalence checks, redeployment checks, and
Terraform-native validation to ensure that lifted programs
faithfully represent the original cloud infrastructure.

III. BETWEEN LIFTING AND LILAC

Although our work and Lilac address the same fundamental
problem, they differ in scope, abstraction level, and system
integration. Our work represents a focused, implementation-
oriented lifting process, while Lilac is a complete end-to-end
framework designed for automation and generalization.

In terms of scope, our method concentrates on rule learning
and graph-based mapping for concrete lifting scenarios, pri-
marily using Azure as the main experimental platform. Lilac
generalizes this approach across multiple cloud providers and
integrates additional components such as API selection agents,
persistent knowledge bases, and cross-run rule reuse.

In terms of abstraction, our method operates at a lower
level, explicitly reasoning about JSON schemas, Terraform
syntax, and concrete edge cases encountered in practice. Lilac
abstracts these insights into formal lifting rules that can be
automatically applied, verified, and incrementally refined as
more training data becomes available.

From a system design perspective, our approach relies on
iterative engineering workflows and manual orchestration of
lifting stages. In contrast, Lilac formalizes these stages into
a structured pipeline with explicit correctness guarantees. In
this sense, our work can be viewed as the empirical and
technical foundation that informs and complements Lilac’s
broader, automated design.

IV. CLOUD STATE IDENTIFICATION IN LIFTING

An essential prerequisite for IaC lifting is cloud state identi-
fication, which refers to discovering existing cloud resources,
retrieving their detailed configurations, and converting them
into a unified JSON representation suitable for downstream
lifting. During this semester, I focus on designing python

scripts to automate this process across Azure, GCP, and AWS.
Since each cloud platform exposes resources through different
abstractions and scopes, cloud state identification requires
platform-specific workflows.

A. Azure
Azure provides the most convenient support for cloud state

identification due to its unified resource model. Azure orga-
nizes resources hierarchically using subscriptions and resource
groups. Subscriptions serve as the primary unit for billing and
access control, while resource groups act as logical containers
for lifecycle management of related resources. The Azure
CLI offers official commands such as az group list to
enumerate all resources groups within a subscription, and
az resource show to retrieve detailed resource descriptions.
These commands return structured JSON outputs with con-
sistent schemas, making them straightforward to parse and
process. As a result, Azure’s output format is treated as the
reference standard for cloud state identification.

Fig. 1. Lilac Cloud State Identification

The recorded JSON file, shown in Listing 1, captures the
detailed configuration of the resource, including properties
such as endpoints and capabilities.

Listing 1. Recorded Azure OpenAI Resource
1 {
2 "value": [
3 {
4 "id": "/ subscriptions/f736b311.../

testingLiLac",
5 "name": "testingLiLac",
6 "location": "eastus",
7 "kind": "OpenAI",
8 "properties": {
9 "endpoint": "https:// testinglilac.

openai.azure.com/",
10 "publicNetworkAccess": "Enabled",
11 "capabilities": [
12 { "name": "VirtualNetworks" },
13 { "name": "MaxFineTuneCount", "value

": "500" }
14]
15 },
16 "resourceGroup": "lilac",
17 "type": "Microsoft.CognitiveServices/

accounts"
18 }
19]
20 }

B. GCP
Google Cloud Platform (GCP) adopts a project-centric

resource model, where all resources are scoped to projects. Un-
like Azure’s two-level hierarchy of Subscriptions and Resource

Groups, GCP flattens these concepts into Projects, which
serve as the singular container for billing, access control, and
resource isolation. Furthermore, while the gcloud CLI sup-
ports listing resources within a project, "gcloud", "asset",
"search-all-resources", "--project", project id,
"--format=json", "--quiet", it does not provide a unified
command for describing all resource types. Each service
exposes service-specific commands. For example, describing
a compute instance requires parsing its resource ID to extract
the zone and passing it via a --zone flag, "gcloud compute
instances describe <instance-id> --zone <zone>",
whereas describing a subnetwork requires extracting and pass-
ing a --region flag, "gcloud compute networks subnets
describe <subnetwork-id> --region <region>". Even
more complex, resources like DNS record sets cannot be
described directly by ID; they require an auxiliary lookup to
resolve the parent managed zone’s ID to a name before the
record set can be queried. This lack of a uniform interface
compels the identification script to maintain a large set of
conditional parsing rules for every supported resource type,
contrasting sharply with Azure’s consistent model.

To overcome the fragmented command structure in GCP,
we integrated an LLM-based resolver using the OpenAI API.
This component automates the inference of correct gcloud
commands for any given resource type. The workflow follows
a structured, sequential process:

1) Input Aggregation: Resources identified by the initial
global search are grouped by their asset type. Items with
unknown hardware settings that cannot be resolved by
static rules are collected into a batch list.

2) Prompt Construction: For each batch, we construct a
prompt containing a system instruction acting as a ”GCP
CLI expert.” We provide few-shot examples to guide the
model on how to extract zones, regions, and names from
complex resource IDs. For instance, the model is shown
that a subnetwork ID implies a --region flag, while a
VM instance ID implies a --zone flag.

3) Batch Inference: The constructed prompt is sent to the
ChatGPT API. We process resources in batches (e.g., 20
items) to optimize network latency and token usage. The
model returns a strict JSON array of gcloud command
arguments corresponding to the input list.

4) Response Parsing & Caching: The script parses the
returned JSON array. Valid commands are executed
immediately to retrieve the resource details. Crucially,
the generated command structure is cached by asset type
(e.g., mapping compute.googleapis.com/Instance to
its specific command template). Future occurrences of
the same asset type retrieve the template from the cache,
avoiding redundant API calls.

5) Execution: Finally, the resolved gcloud commands are
executed against the live GCP environment. The stan-
dard JSON output is captured and normalized into our
unified schema for downstream processing.

C. Recorded JSON Artifact

Fig. 2. GCP Firewall Policy

1 {
2 "value": [
3 {
4 "allowed": [
5 {
6 "IPProtocol": "tcp",
7 "ports": ["22"]
8 }
9],

10 "description": "Allow SSH from anywhere"
,

11 ...
12 "name": "default -allow -ssh",
13 ...
14 "priority": 65534,
15 "sourceRanges": ["0.0.0.0/0"],
16 "assetType": "compute.googleapis.com/

Firewall"
17 },
18 {
19 "allowed": [
20 {
21 "IPProtocol": "tcp",
22 "ports": ["0-65535"]
23 },
24 ...
25],
26 "description": "Allow internal traffic

on the default network",
27 ...
28 "name": "default -allow -internal",
29 ...
30 },
31 {
32 "allowed": [
33 {
34 "IPProtocol": "tcp",
35 "ports": ["3389"]
36 }
37],
38 "description": "Allow RDP from anywhere"

,
39 ...
40 "name": "default -allow -rdp",
41 ...
42 },
43 {
44 "allowed": [

45 {
46 "IPProtocol": "icmp"
47 }
48],
49 "description": "Allow ICMP from anywhere

",
50 ...
51 "name": "default -allow -icmp",
52 ...
53 }
54]
55 }

D. AWS

AWS architecture shares more DNA with GCP than Azure,
primarily due to its service-centric rather than resource-centric
API design. Consequently, identifying the cloud state in AWS
faces similar fragmentation challenges. While Azure offers a
uniform az resource show, AWS separates control planes
by service, e.g., aws ec2 describe-instances, aws s3api
list-buckets, and aws rds describe-db-instances. Al-
though we have not yet implemented the identification script
for AWS, we propose a hybrid identification strategy mirroring
our GCP approach:

1) Global Discovery: We utilize the aws
resourcegroupstaggingapi get-resources
command as a coarse-grained aggregator. This API
acts similarly to GCP’s Asset Inventory, allowing us
to enumerate resources across regions (by iterating
through standard regions like us-east-1, us-west-2)
and resource types.

2) LLM-Driven Command Resolution: Given the
vast number of service-specific namespaces in the
AWS CLI, we employ the same ChatGPT-based
resolver pattern. The aggregated ARNs (Amazon
Resource Names) from the discovery phase serve
as inputs. The LLM then constructs the precise
describe or get commands—for example, map-
ping an ARN like arn:aws:s3:::my-bucket to
aws s3api get-bucket-location and aws s3api
get-bucket-acl, or an EC2 ARN to aws ec2
describe-instances --instance-ids <id>.

3) Execution & Normalization: The generated commands
are executed against the AWS environment. The result-
ing heterogenous JSON outputs are then normalized into
our unified Azure-like schema, ensuring that despite the
underlying API differences, the final state representation
remains consistent for IaC processing.

V. CONCLUSION

We have demonstrated a unified framework for identify-
ing cloud resources across Azure, GCP, and AWS. While
Azure’s consistent resource model simplifies discovery, the
fragmented APIs of GCP and AWS necessitate a hybrid
approach combining LLM-powered command resolution. This
methodology effectively normalizes distinct cloud states into
a single schema for further Lifting processing. Future work

will focus on implementing the AWS identification script and
organize the codebase into a more maintainable structure.

	Lifting
	Lilac
	Between Lifting and Lilac
	Cloud State Identification in Lifting
	Azure
	GCP
	Recorded JSON Artifact
	AWS

	Conclusion

