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Abstract

Quantum state tomography is a central task in quantum information science, but it typically requires
a prohibitively large number of samples that scale poorly with system dimension. This challenge has
motivated the exploration of more efficient quantum learning problems that avoid full state reconstruc-
tion. One of such problems is shadow tomography introduced by Scott Aaronson [1], which requires
the estimations of the shadow, a given set of two-outcome measurements. Consequently, when the num-
ber of shadows are not too large, shadow tomography was shown to be solvable in exponentially lower
sample complexity compared to full quantum state tomography. Inspired by shadow tomography, we in-
troduce the Quantum Event Identification (QEI) problem, which targets identifying measurements with
high success rates while requiring fewer samples. Unlike standard shadow tomography, which focuses
on obtaining global accuracy across all observables, QEI emphasizes per-measurement success. Exploit-
ing a promised gap in acceptance probabilities, QEI can potentially achieve lower sample complexity
compared to shadow tomography. We evaluate the complexity of QEI through simulations of various
measurement procedures inspired by procedures of quantum event finding introduced by Adam Bene
Watts and John Bostanci [2]. These procedures achieve stable success rates of around 60% with only
a single copy of the unknown state in low-dimensional settings. We also adapt classical shadow and
related techniques to QEI, examining their relative strengths and validating the event-finding bounds
introduced in Section 1.4. Our results highlight the potential of QEI as a resource-efficient strategy
for quantum measurement prediction, suggesting avenues for theoretical refinements and more scalable
computational methods.

Keywords: Quantum Event Identification, Quantum Measurements, Blended Measurements, Classical Shad-
ows, Simulation

1 Introduction

Quantum computers have the potential to outperform classical computers in specific problems because
qubits can store information beyond a simple 0 or 1. However, due to the collapsing nature of quantum
state measurement, we cannot directly retrieve all information from a unknown quantum state [3]. This fact
has led to researches in quantum information science aimed at learning quantum states.

Quantum state tomography has been developed as a method to recover the full description of a unknown
quantum state with several copies of the state [4–8]. It has been shown that, for a quantum state ρ ∈ Cd×d,
Θ(d2/ϵ2) copies is required to complete quantum state tomography with high success probability and pre-
cision ϵ in trace distance [9]. However, since the sample and time complexity of quantum state tomography
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grows exponentially with number of qubits in the system, implementing quantum state tomography on large
quantum systems is usually impractical.

In pursuit of more efficient methods of information extraction from quantum states, in 2018, Scott
Aaronson proposed shadow tomography of quantum states [1].

Problem 1.1 (Shadow Tomography, Problem 1 from [1]). given an unknown d-dimensional quantum mixed
state ρ, as well as known two-outcome measurementsM1, . . . ,Mm, each of which accepts ρ with probability
Tr[Miρ] and rejects ρ with probability 1- Tr[Miρ], output numbers b1, . . . , bm ∈ [0, 1] such that ∥bi −
Tr[Miρ]∥ ≤ ϵ for all i. with success probability at least 1 − ϵ. Do this via a measurement of ρ⊗k, where
k = k(d,m, ϵ, δ) is as small as possible.

Shadow tomography aims to address the scalability issues of quantum state tomography by waiving
the need to get full information of the state. Instead, shadow tomography focuses on obtaining specific
“shadows”, which are estimation of the two-outcomes measurements. In [1], Scott Aaronson constructed a
procedure solving shadow tomography using Õ(log(1/δ) · ϵ−4 · log4m · log d)1 copies of the unknown state.
While the sample complexity only grows logarithmically with the system dimension d, it depends on m, the
number of shadows.

Following Scott Aaronson’s result, in 2020, Huang, Kueng, and Preskill introduced classical shadow
[10] as a process for shadow tomography where the measurement on the unknown state does not depend
on the two-outcome measurements to be predicted. The classical shadow procedure employs randomized
measurements on the unknown quantum state to create a “classical shadow,” 2 which approximates the
unknown quantum state. “Classical shadow” is an array of matrices, containing N independent classical
snapshots of the quantum state ρ. Specifically,

S(ρ;N) = {ρ̂1, ρ̂2, . . . , ρ̂N}, ρ̂i = M−1(U †
i |bi⟩⟨bi|Ui),

where {Ui} are random unitaries from some ensemble to change the measurement basis, {|bi⟩} are mea-
surement outcomes, and M−1 is the inverted quantum channel applied during post-processing. This array
serves as a description of the quantum state, enabling efficient prediction of linear properties. The classical
shadow procedure can be used to solve the shadow tomography problem by using the classical shadow array
repeatedly to compute the expectation values of each two-outcome measurement one by one.

However, the number of sample needed for classical shadow to solve shadow tomography scales with
the “shadow norm” of the two-outcome measurements. In particular, classical shadows of size N suffice to
predict m arbitrary linear target functions Tr[Miρ], . . . ,Tr[Mmρ] up to additive error ϵ, provided that

N = O

(
logm · ϵ−2 ·max

i
∥Mi∥2shadow

)
.

, where ∥Mi∥shadow is the shadow norm. The shadow norm depends on the ensemble of random measurement
used. For random Clifford measurements, shadow norm is equivalent to Hilbert–Schmidt norms, Tr[M2

i ].
Measurements with higher rank typically have larger Hilbert–Schmidt norms because Tr[M2

i ] sums the
squares of all eigenvalues of Mi. Consequently, the shadow norm of Mi can be as large as the dimension
of the system, which significantly increases the sample complexity N . This makes accurate predictions
computationally expensive for high-rank observables.

In 2020, Costin Badescu and Ryan O’Donnell proposed an algorithm to solve the quantum threshold
search problem 1.2 in [11] using O((log2m)/ϵ2) samples. Moreover, they use their threshold search

1Õ hides a poly (log logM, log logD, log ϵ−1) factor.
2“Classical shadow” is a overloaded name in [10], in which “classical shadow” implies both the procedure and the classical

description of a unknown state.
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algorithm to solve the shadow tomography problem with only Õ((log2m)(log d)(ϵ−4))3 copies, achieving
the best known dependence on the three parameters m, d, and ϵ.

Problem 1.2 (Quantum Threshold Search Problem, [11]). Given:

1. Parameters 0 < ϵ, δ < 1
2 .

2. Access to unentangled copies of an unknown d-dimensional quantum state ρ.

3. A list of d-dimensional observables 0 ≤M1, . . . ,Mm ≤ I.

4. A list of thresholds 0 ≤ θ1, . . . , θm ≤ 1.

The algorithm should either output:

• “Tr[Mjρ] > θj − ϵ” for some particular j; or else,

• “Tr[Miρ] ≤ θi for all i”.

The output of the algorithm is a sample from a distribution over indices j such that “Tr[Mjρ] > θj − ϵ” or
“Tr[Miρ] ≤ θi for all i” if no such j exists. The task is to minimize the number k of copies that are used,
while ensuring the probability of a false output statement is at most δ.

Beside the quantum threshold search problem, Quantum OR Problem is another well-studied problem
related to shadow tomography [12, 13].

Problem 1.3 (Quantum OR Problem, Theorem 26 from [2]). Let M = {M1,M2, . . . ,Mm} be a set of
two-outcome measurements, and let ρ be an unknown quantum state. The goal of the OR problem is to
distinguish the two cases:

1. There exists a measurement Mj that Tr[Mjρ] ≥ θ is high.

2. The total accepting probability of all measurements
∑

i Tr[Miρ] is low.

In [13], Scott Aaronson attempted to solve Quantum OR Problem using the random measurement
method. However, his proof was later found to contain a flaw, as it failed to rule out the Anti-Zeno ef-
fect, as highlighted in [12].

Subsequently, in 2023, Adam Bene Watt and John Bostanci demonstrated in the paper “Quantum Event
Learning and Gentle Random Measurement” [2] that the random measurement causes minimal disturbance
on average. Consequently, they were able to rule out the occurrence of the Anti-Zeno effect in the random
measurement method. Further, they demonstrate that the original Aaronson’s quantum OR algorithm, with
minor modifications in the number of random measurements applied, remains valid. Furthermore, the au-
thors propose their own procedure for the quantum OR problem, blended measurement, and demonstrate
that its efficiency surpasses that of random measurement.

The authors of [2] also introduce a class of learning problems, “Event Learning,” which encompasses
problems involving an unknown quantum state ρ and a set of measurements M1,M2, . . . ,Mm, with the
objective of learning properties of the measurements’ acceptance probabilities. Shadow tomography is
identified as a specific instance of an Event Learning problem. Additionally, they introduces another Event
Learning problems- Quantum Event Finding.

Problem 1.4 (Event Finding, [2]). Let M = {M1,M2, . . . ,Mm} be a set of two-outcome measurements,
and let ρ be a quantum state such that either:

3Õ hides a poly factor L = log
(

log d
δϵ

)
.
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• There exists an i ∈ [m] such that Tr[Miρ] > 1− ϵ (Case 1), or

•
∑

iTr[Miρ] ≤ δ (Case 2).

If the event is Case 1, the goal is to point out a measurement Mi with a large value of Tr[Miρ]. Conversely,
in Case 2, the objective is to confirm that the event is Case 2.

Event Finding is similar to the quantum threshold search problem and the quantum OR problem. The
first difference between Event Finding and threshold search is that event finding has only one “threshold
probability” across all measurements. Additionally, event finding imposes a promise on its measurement
set: the sum of the accepting probabilities for Case 2 must be less than or equal to δ. In contrast, in the
quantum threshold search problem, if the measurements do not satisfy “case 1”, they must satisfy “case 2”.
Compared to the quantum OR problem, Event Finding is a generalization. Event finding is more challenging
because it not only requires discerning the event (Case 1 or Case 2) but also finding a measurement that
accepts in Case 1.

In the latter part of [2], the authors adapt their measurement procedures to the quantum threshold search
problem, achieving the same sample complexity, O((log2m)/ϵ2), as established in [11]. Similarly, they
apply their algorithms to shadow tomography problem, attaining results that match the current best-known
sample complexity of Õ((log2m)(log d)/ϵ4).

1.1 Quantum Event Identification

In this work, we introduce the Quantum Event Identification (QEI) problem to efficiently identify mea-
surements with high acceptance probabilities. In this sections, we present the motivation, advantages, and
potential of QEI as a quantum event learning problem with low sample complexity. Additionally, QEI cap-
tures the spirit of shadow tomography: learning useful properties from an approximate shadow of the state,
enabling fast estimation of non-commuting measurements.

Problem 1.5 (Quantum Event Identification). Given an unknown mixed state ρ and known two-outcome
measurements M1, . . . ,Mm, assume that for each i ∈ [m], we are promised that either Tr(Miρ) ≥ ci or
Tr(Miρ) ≤ ci − ϵ. We want to determine which of these conditions holds for each i ∈ [m] so that, for every
i, we successfully predict either Tr[Miρ] ≤ ci − ϵ or Tr[Miρ] ≥ ci with a probability at least 1 −∆. Note
that the success probability 1−∆ is the success probability for predicting a single Tr[Miρ].

One of the key distinctions between Quantum Event Identification and shadow tomography is that it
emphasizes the success probability of predicting the condition for each single measurement, rather than
requiring the success probability of predicting all measurements correctly at once.

One of the motivation of Quantum Event Identification is to study the sample complexity of predicting
an unknown quantum state. To illustrate this point, we first give an exposition of the sample complexity of
shadow tomography.

The best-known sample upper bound of shadow tomography is aboutO((log2m)/ϵ4), wherem denotes
the number of observables [10,11], while Aaronson’s initial work suggests a lower bound of Ω((logm)/ϵ2) [1].
Determining the exact sample complexity remains an open question.

Putting extra constraints on shadow tomography problem can reduce its sample complexity. In particu-
lar, many of shadow tomography’s applications have a promised gap in the accept probabilities; for example,
in [1], a quantum one-way communication scenario is described in which Alice sends a quantum state |ψx⟩
encoding information about x to Bob, who holds information about y in My and computes f(x, y) for pairs
(x, y) ∈ S, Bob then uses shadow tomography to estimate Tr[Myψx] for all y. If we restrict to a total func-
tion f containing all (x, y) pairs, then there is a bounded probability gap within Tr[Myψx], corresponding to
the accept probability gap between f = 0 and f = 1. Additionally, quantum copy-protected software [1,14]
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uses a quantum state ρf to enable users to evaluate a Boolean function f : {0, 1}n → {0, 1}. Similar to the
one-way communication application, when using shadow tomography to predict the outcome of a quantum
copy-protected software, there is a gap in the accept probability. This promised gap in accept probability can
reduce the sample complexity. In [1], Scott Aaronson introduced what we refer to as gapped shadow tomog-
raphy, i.e. shadow tomography with the promise that the accept probabilities are gapped. He proved that
gapped shadow tomography can be done using onlyO

(
log(m/δ)/ϵ2

)
copies instead of theO

(
log(m2)/ϵ4

)
of shadow tomography:

Proposition 1.6 (Sample upper bound of Gapped shadow tomography, Proposition 20 from [1]). Given
an unknown mixed state ρ and known two-outcome measurements M1, . . . ,Mm, along with real values
ϵ, c1, . . . , cm ∈ [0, 1], assume that for each i ∈ [m], we are promised that either Tr[Miρ] ≥ ci or Tr[Miρ] ≤
ci − ϵ. In this case, we can determine which condition holds for each i ∈ [m] using k = O

(
log(m/δ)/ϵ2

)
copies of ρ, with a success probability of at least 1− δ.

Note that the sample complexity of gapped shadow tomography is same as its “classical version”, which
we defined as follows:

Problem 1.7 (Classical Gapped Shadow Tomography Problem). Given an unknown diagonal density matrix
ρ a set with diagonal measurements, M1, . . . ,Mm, and real values ϵ, c1, . . . , cm ∈ [0, 1], our goal is to
discern if Tr[Miρ] > ci or Tr[Miρ] < ci − ϵ for each i ∈ {1, . . . ,m}. After implementing one measurement
Mi on a copy, we obtain the outcome oi.

In Appendix A, we prove that the sample complexity of Problem 1.7 is Ω(log(m/δ)), which matches
the sample complexity of its quantum version, Proposition 1.6. Since the classical version is easier then the
quantum version, both versions has sample complexity Θ(log(m/δ)). Accordingly, having non-commuting
measurements does not increase the sample complexity of gapped shadow tomography.

In our self-defined problem– Quantum Event Identification (QEI), we propose to predict Tr[Miρ] for
each measurement Mi with a success probability of 1 −∆, rather than aiming to predict all measurements
correctly with probability 1 − δ. The motivation behind this adjustment stems from the fact that in the
classical version of the gapped shadow tomography problem, such a change allows us to achieve a sample
complexity of O(1), as explained in the follows. As stated in Lemma A.2, we can successfully predict each
measurement with probability 1−∆ with Θ

(
log
(
1/∆

))
copies. Moreover, since this is a classical problem,

“measurements” for allm two-outcome measurements can be performed on a single sample simultaneously.
If we choose ∆ as a constant, the sample complexity is O(1).

Since the quantum version of gapped shadow tomography is no harder then the classical version, we aim
to explore the possibility that QEI also has the same sample complexity of its classical counterpart and can
be done in O(1) samples.

To investigate possibility that QEI could be achieved with O(1) copies, we commence experimental
simulations. Inspired by [2], where the Event Finding Problem 1.4 is addressed using only one copy, we
develop a series of procedures to tackle the quantum event identification problem and use simulation tools
to experimentally validate the feasibility of our approach.

In our simulation study, we first validate the performance of blended and random measurement methods
proposed by [2] on the quantum event finding problem. Building on these validated methods, we derive
multiple procedures for QEI and run simulations to assess their relative efficiency. Additionally, we im-
plement the classical shadow method from [10] to evaluate whether it outperforms the derived procedures
from [2]. Finally, we further analyze the performance of classical shadow procedure on QEI. Through these
experiments, we provide a comprehensive assessment of our procedures’ efficiency in addressing Quantum
Event Identification.
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1.2 Outline

This thesis is organized as follows. In Chapter 2, we establish the foundational concepts and introduce the
primary notation for quantum measurements and Event Learning Problem. This chapter lays the groundwork
for understanding the core algorithms and procedures developed later.

In Chapter 3, we delve into the various procedures tailored for QEI and also introduce our measurement
generating procedure. These include adaptations of existing methods such as blended and random measure-
ments, as well as new techniques like the interweaving and three-outcome blended measurements. We also
propose an optimization strategy for enhancing blended measurements and discuss how classical shadow
is employed to handle QEI. Each procedure is explained in detail, along with its rationale and intended
improvements over prior approaches.

Chapter 4 focuses on the simulation design and analysis. We describe the setup used to simulate quantum
event learning, including parameters such as measurement dimensions, rank, and probability thresholds.
The results of these simulations are presented through detailed comparisons of the procedures, showing
their relative effectiveness in solving the quantum event identification problem. Special attention is given
to the efficiency of each method, the influence of key variables such as the number of measurements and
copies, and the behavior of classical shadow procedure in different test cases. The chapter also explores the
impact of measurement constraints on the simulation outcomes.

2 Preliminary

In this thesis, we adopt the notation aligned with our primary reference [2]. A quantum measurement,
specifically a positive-operator valued measure (POVM), is represented by a set {M1,M2, . . . ,Mk}, where
each Mi is an observable matrix in Cd×d, satisfying 0 ≤Mi ≤ I and the completeness relation

∑
iMi = I .

The operators’ square roots, {
√
M1,

√
M2, . . . ,

√
Mk}, are termed ”measurement operators” and serve as

fundamental elements within quantum measurement frameworks.
In subsequent chapters, we will refer to ”two-outcome measurements,” represented by pairs {

√
M,

√
I −M}.

A ”set of two-outcome measurements” consists of collections with outcomes labeled as ”accept” or ”reject.”
We denote this set by M, expressed as

M = {{
√
M1,

√
I −M1}, . . . , {

√
Mm,

√
I −Mm}}.

For brevity, we may also write this ensemble as M = {M1, . . . ,Mm}.
The acceptance probability for a measurement is given by Tr[Miρ], where ρ represents the quantum

state under observation. An outcome i indicates the acceptance of measurement Mi. In our simulations, we
evaluate the success probability of each procedure by calculating the ratio of correctly matched outcomes,
distinguishing between measurements with high and low acceptance probabilities.

Blended measurement 2.1 is proposed in [2] to solve the event learning problem. A blended measure-
ment merges all rejected outcomes into one outcome; thus, we only know the outcome when it accepts, but
we cannot determine which rejecting outcome is.

Definition 2.1 (Blended Measurement, [2]). Given a set of two-outcome measurements M = {M1,M2, . . . ,Mm},
the blended measurement E(M) is defined to be the (m+ 1)-outcome measurement with measurement op-
erators

E0 =

√√√√1−
m∑
i=1

Mi

m
,

Ei =

√
Mi

m
, for i ∈ {1, . . . ,m}.
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We refer to outcome E0 as the ”reject” outcome, and outcomes E1, . . . , Em as the ”accepting” outcomes.

Further, the two procedures proposed by the authors in [2] to address the event-finding problem 1.4 each
rely on the repeated application of blended measurements and random measurements.

Procedure 1: Blended Measurement Procedure [2]

Blended Measurement Procedure

Input: A classical description of a set of two-outcome measurementsM = {M1,M2, . . . ,Mm} and
a single copy of a state ρ.
Output: ACCEPT or REJECT.

1. Prepare the quantum system in state ρ.

2. Repeat m times:

(a) Perform the blended measurement {M} on the state. If the measurement accepts, return
ACCEPT.

3. Return REJECT.

Procedure 2: Random Measurement Procedure [2]

Random Measurement Procedure

Input: A black-box implementation of each measurement in M = {M1,M2, . . . ,Mm} and a single
copy of state ρ.
Output: ACCEPT or REJECT.

1. Prepare the quantum system in state ρ.

2. Repeat m times:

(a) Pick a random measurement Mi ∈M .

(b) Perform the measurement Mi on the current state. If the measurement accepts, return
ACCEPT.

3. Return REJECT.

In [2], the authors provide two bounds on the efficiency of using each procedure to solve the Event
Finding Problem 1.4:

Theorem 2.2 (Blended Measurements on Event Finding, Theorem 31 from [2]). LetM = {M1,M2, . . . ,Mm}
be a set of two-outcome measurements. Let ρ be a state such that either: there exists an i ∈ [m] with
Tr[Miρ] > 1− ϵ (Case 1), or

∑
i Tr[Miρ] ≤ δ (Case 2). Also, define:

β =
∑

i:Tr[Miρ]<1−ϵ

Tr[Miρ].

Then, if the blended measurement B(M) is applied m times in sequence to a quantum system initially in
state ρ: in Case 1, with probability at least

(1− ϵ)3

12(1 + β)
,
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at least one accepting outcome is observed, and the first accepting outcome observed corresponds to a
measurement Mi with Tr[Miρ] > 1 − ϵ. In Case 2, an accepting outcome is observed with probability at
most δ.

Theorem 2.3 (Random Measurements on Event Finding, Theorem 32 from [2]). LetM = {M1,M2, . . . ,Mm}
be a set of two-outcome projective measurements, and define ρ, β, ϵ, and δ as above. Then, if measurements
are chosen at random (with replacement) from M and applied to a quantum system initially in state ρ: in
Case 1, with probability at least

(1− ϵ)7

1296(1 + β)3
,

at least one measurement accepts, and the first accepting measurement is a measurement Mi ∈ M with
Tr[Miρ] > 1− ϵ. In Case 2, a measurement accepts with probability at most 2δ.

3 Method

In this chapter, we seek to demonstrate the efficiency of various procedures for the QEI problem. Our aim
is to ensure that with these procedures, a constant success probability is achievable in QEI. This, in turn,
ensures only constant sample complexity for the copies required.

Problem 3.1 (Quantum Event Identification). Given an unknown mixed state ρ and known two-outcome
measurements M1, . . . ,Mm, assume that for each i ∈ [m], we are promised that either Tr(Miρ) ≥ ci or
Tr(Miρ) ≤ ci − ϵ. We want to determine which of these conditions holds for each i ∈ [m] so that, for every
i, we successfully predict either Tr[Miρ] ≤ ci − ϵ or Tr[Miρ] ≥ ci with a probability at least 1 −∆. Note
that the success probability 1−∆ is the success probability for predicting a single Tr[Miρ].

3.1 Measurements Generating

Before implementing the procedures, it is necessary to generate a testing set. Without loss of generality,
we pick the ”unknown state” as |0⟩, and generates measurements satisfying the required conditions. These
conditions include the acceptance probability Tr[Miρ], as well as the rank, dimension of Mi. Ideally, the
generated measurement set should be as close to the theoretically worst-case scenario as possible. However,
obtaining the worst case is theoretically challenging and beyond the scope of this research. Instead, we
utilize the Haar random case to ensure that the measurement set remains sufficiently challenging.

The acceptance probability of a random measurement that satisfies the requirement often falls into ex-
tremes—it is either fairly high or fairly low(Tr[Miρ] ≤ ci − ϵ or Tr[Miρ] ≥ ci). For our test we set c = 0.9
and ϵ = 0.8. Due to hardware constraints, directly sampling measurements that meet the acceptance proba-
bility threshold by simply rotating the projector for every sample is impractical. To address this, we propose
a computationally efficient procedure for generating a measurement set satisfying the requirement.

Let the projector P = diag(0, 0, . . . , 0︸ ︷︷ ︸
d−r zeros

, 1, 1, . . . , 1︸ ︷︷ ︸
r ones

) , which is a d × d matrix with rank r. The simplest

method to generate a measurement Mi with Haar-random involves creating a random unitary U and rotating
P as Mi = U †PU . However, this approach is computationally expensive in relatively high dimension,
as it requires substantial time and resources to filter and identify Mi that satisfy the desired acceptance
probability. To improve efficiency while preserving Haar-random, we instead use the following process to
find a suitable U with a special vector V :

1. Sampling the accept probability p: We first sample a probability p that satisfies the acceptance
probability threshold (p ≥ ci or p ≤ ci − ϵ) while maintaining Haar-random properties. This is
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achieved by truncating the normal distribution within specified ranges, such as 0 ∼ ci − ϵ or ci ∼ 1,
to ensure that the sampled p adheres to the constraints and is sufficiently random.

2. Generating the Special Vector V : Next, we construct a vector V of the form:

V =
[
a1 . . . ad−r b1 . . . br

]
where {ai} and {bi} are Haar-randomly generated complex vectors with their norm satisfy the condi-
tions:

d−r∑
i=1

|ai|2 = 1− p and
r∑

i=1

|bi|2 = p.

Constructing V this way ensures that the measurement’s acceptance probability will match the sam-
pled p later in the process.

3. Constructing the Unitary Ur: To construct the unitary matrix Ur, we begin by replacing the first
column of a Haar-randomly generated unitary matrix U with the vector V . Next, we perform a QR
decomposition on U . The resulting orthogonal matrix Q from the QR decomposition serves as the
desired unitary Ur, ensuring that its first column remains V . This guarantees that the acceptance
probability aligns with the sampled p.

4. Rotating the Projector: Using Ur, we generate the measurement Mi as:

Mi = U †
rPUr.

This guarantees that Tr[Miρ] = p, where p is the probability sampled in the first step.

This procedure significantly accelerates the measurement generation process while preserving suffi-
cient randomness in Mi. To validate the correctness of our approach, we conducted a simulation demon-
strating that the measurement generation procedure using the special vector effectively approximates Haar-
randomness. In Figure 1, we compare the success probabilities for solving the event-finding problem with
blended measurement in Case 1 using measurements generated by the special vector procedure and those
generated by Haar-randomly selected unitaries to rotate the projector. The results show that the proce-
dure utilizing the special vector achieves a success probability nearly identical to that of the Haar-random
approach. For computational feasibility, the simulation dimension was reduced to 16, compared to the
standard dimension of 64 used in our other simulations.
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(a) The Measurement Generating Procedure with
Special Vector

(b) The Measurement Generating Procedure with
Haar-Randomly Selected Unitaries

Figure 1: Comparison of the Success Probabilty in Event Finding Case 1 with Different Measurement
Generating Procedures

3.2 Procedures

We developed six procedures specifically tailored for the QEI problem. Initially, we extended Procedure
1 and Procedure 2 to generate additional outputs to accommodate QEI, which features a number of high
accepting probability outcomes (Procedure 3.2.1 and Procedure 3.2.2). Next, by modifying the structure of
blended measurements, we introduced three novel procedures: ”Interweave” (Procedure 3.2.3) combines the
standard blended measurement set with its inverse, ”Blended Three” (Procedure 3.2.4) minimizes blended
measurement outcomes while maximizing the number of measurements per outcome, using majority voting
for outcome selection and ”Optimizing Blended” (Procedure 3.2.5) seeks to enhance the acceptance prob-
abilities across all operators in the measurement set. Lastly, we (Procedure 3.2.6) leverages the classical
shadow technique to tackle QEI.

The preliminary step for these procedures involves generating a set of two-outcome measurements,
based on parameters d (dimension), r (rank), m (number of measurements), and s (portion of high accep-
tance measurements, set to m/2). Initially, half of the measurements satisfy Tr[Miρ] > ci, indicating high
acceptance probabilities, while the other half satisfy Tr[Miρ] < ci − ϵ, indicating low acceptance probabil-
ities. To increase flexibility, we introduce a parameter α, which adjusts the number of repetitions for each
measurement on the state ρ.
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3.2.1 Procedure 3: Special Blended measurement for QEI

Special Blended measurement for QEI

Input: A black-box implementation of each measurement in M = {M1,M2, . . . ,Mm}, c copies of
state ρ.
Output: O = {o1, . . . , om/2}, 1 ≤ oi ≤ m, where each oi is the index of a measurement with high
accepting probability.

1. Generate the blended measurement set E as defined in Definition 2.1.

2. Initialize a counting table T = {t1, . . . , tm}, with each ti = 0.

3. Repeat the following process c times:

(a) Initialize a quantum system in the state ρ.

(b) Execute α×m iterations, with each iteration involving:

i. Perform a measurement using the blended measurement set E on ρ. If the measure-
ment Mi accepts, increment ti by 1.

4. From the counting table T , identify the indices corresponding to the top half with the highest
frequency of acceptance as the outcome set O. If the number of unique outcomes is less than
m/2, randomly select additional indices from the less frequent outcomes to complete the set.
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3.2.2 Procedure 4: Special Random measurement for QEI

Special Random measurement for QEI

Input: A black-box implementation of each measurement in M = {M1,M2, . . . ,Mm}, a single
copy of state ρ.
Output: O = {o1, . . . , om/2}, 1 ≤ oi ≤ m, where each oi is the index of a measurement with high
accepting probability.

1. Initialize a counting table T = {t1, . . . , tm}, with each ti = 0.

2. Repeat the following process c times:

(a) Prepare a quantum system in the state ρ.

(b) Shuffle the measurements in the set M .

(c) Execute m iterations, with each iteration involving:

i. Select the next measurement Mi from the shuffled set M , ensuring no repetition.
ii. Perform the measurement Mi on the state ρ. If the measurement Mi accepts, incre-

ment ti by 1.

3. From the counting table T , identify the indices corresponding to the top half with the highest
frequency of acceptance as the outcome set O. If the number of unique outcomes is less than
m/2, randomly select additional indices from the less frequent outcomes to complete the set.
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3.2.3 Procedure 5: Interweaving Blended measurement for QEI

The Interweaving Blended Measurement procedure utilizes inverse blended measurements 3.2, which are
specifically designed to identify outcomes with low acceptance probabilities. This approach strategically
amplifies the distinction between the set of measurements yielding high acceptance probabilities and those
with low acceptance probabilities. The inverse blended measurement blends the accepting outcome while
keeping the rejecting outcomes unchanged. In other words, we cannot distinguish which measurement was
accepted, but we do know which one was rejected.

Definition 3.2 (Inverse Blended Measurement). Given a set of two outcome measurements M = {M1,M2, . . . ,Mm}
the inverse blended measurement Einv is defined to be the m+1 outcome measurement with measurement op-
eratorsw

E0 =

√√√√1−
m∑
i=1

1−Mi

m

Ei =

√
1−Mi

m
for i ∈ {1, . . . ,m}

We refer to outcome E0 as the ”accept” outcome, and outcomes E1, . . . , Em as ”rejecting outcomes.

Interweaving Blended measurement for QEI

Input: A black-box implementation of each measurement inM = {M1,M2, . . . ,Mm}, and c copies
of state ρ.
Output: O = {o1, . . . , om/2}, 1 ≤ oi ≤ m, where each oi is the index of a measurement with high
accepting probability.

1. Generate the blended measurement set E according to 2.1, and the inverse blended measure-
ment set Einv according to 3.2.

2. Initialize a counting table T = {t1, . . . , tm}, with each ti = 0.

3. Repeat the following process c times:

(a) Initialize a quantum system in the state ρ.

(b) Execute (α×m)/2 iterations, with each iteration involving:

i. Perform a measurement using the inverse blended measurement set Einv on ρ. If the
measurement Mi accepts, decrement ti by 1.

ii. Perform a measurement using the measurement set E on ρ. If the measurement Mi

accepts, increment ti by 1.

4. From the counting table T , identify the indices corresponding to the top half with the highest
frequency of acceptance to form the outcome set O. If the number of unique outcomes is less
than m/2, randomly select additional indices from the less frequent outcomes to complete the
set.
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3.2.4 Procedure 6: Three-outcome Blended measurement for QEI

In the three-outcome blended measurement procedure, we introduce another measurement process, defined
as a three-outcome blended measurement 3.3. This procedure modifies the original blended measurement to
limit the number of outcomes to three. Apart from the reject outcome, the other two outcomes are derived
by aggregating each half of the two-outcome measurement set. The rejecting outcome includes all reject
outcomes from all measurements, while the other two accept outcomes blend the accept outcomes from the
top and bottom halves of the measurements, respectively.

Definition 3.3 (Three-outcome Blended Measurement). Given a set of two outcome measurements M = {
M1,M2, . . . ,Mm} three-outcome blended measurement Ethree is defined to be the three outcome measure-
ment with measurement operators

E0 =

√√√√1−
m∑
i=1

Mi

m

E1 =

√√√√√m/2∑
i=1

Mi

m

E2 =

√√√√√ m∑
i=(m/2)+1

Mi

m

We refer to outcome E0 as the ”reject” outcome, and outcomes E1, E2 as ”accepting outcomes.

Three-outcome Blended measurement for QEI

Input: A black-box implementation of each measurement inM = {M1,M2, . . . ,Mm}, and c copies
of state ρ.
Output: O = {o1, . . . , om/2}, 1 ≤ oi ≤ m, where each oi is the index of a measurement with high
accepting probability.

1. Initialize a counting table T = {t1, . . . , tm}, with each ti = 0.

2. Repeat the following process c times:

(a) Initialize a quantum system in the state ρ.

(b) Execute 5×m iterations, with each iteration involving:

i. Shuffle the measurements in M .
ii. Generate the three-outcome measurement Ethree according to Definition 3.3.

iii. Perform the measurement Ethree on ρ. If the measurement E1 or E2 accepts, incre-
ment the counts tj , . . . , tk for the corresponding measurementsMj , . . . ,Mk that are
part of the accepted Ei by 1.

3. From the counting table T , identify the indices corresponding to the top half with the highest
frequency of acceptance to form the outcome set O. If the number of unique outcomes is less
than m/2, randomly select additional indices from the less frequent outcomes to complete the
set.
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3.2.5 Procedure 7: Optimizing Blended measurement for QEI

In the optimizing blended measurement procedure, we aim to amplify each acceptance probability, regard-
less of whether it is high or low. To achieve this objective, we introduce Optimizing Blended Measurement
3.4, which uses the optimizing factor– f to achieve the amplification of the accepting probability.

Definition 3.4 (Optimizing Blended Measurement). Given a set of two outcome measurements M = {
M1,M2, . . . ,Mm}, we can compute the optimizing factor q,

S =
m∑
i=1

Mi

q =
1

(λmax/m)

we can get the λmax from the S, and normalize it by dividing m. Afterward, we obtain q. The optimizing
blended measurement Eopt is defined to be the m+1 outcome measurement with measurement operators:

E0 =

√√√√1− q
m∑
i=1

1−Mi

m

Ei =

√
q
1−Mi

m
for i ∈ {1, . . . ,m}

We refer to outcome E0 as the ”accept” outcome, and outcomes E1, . . . , Em as ”rejecting outcomes.

Optimizing Blended measurement for QEI

Input: A black-box implementation of each measurement inM = {M1,M2, . . . ,Mm} and c copies
of state ρ.
Output: O = {o1, . . . , om/2}, 1 ≤ oi ≤ m, where each oi is the index of a measurement with high
accepting probability.

1. Initialize a counting table T = {t1, . . . , tm}, with each ti = 0.

2. Generate the measurement set Eopt according to Definition 3.4.

3. Repeat the following process c times:

(a) Initialize a quantum system in the state ρ.

(b) Execute α×m iterations, with each iteration involving:

i. Perform a measurement using the measurement set Eopt on ρ. If the measurement
Mi accepts, increment ti by 1.

4. From the counting table T , identify the indices corresponding to the top half with the highest
frequency of acceptance to form the outcome set O. If the number of unique outcomes is less
than m/2, randomly select additional indices from the less frequent outcomes to complete the
set.
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3.2.6 Procedure 8: Classical Shadow for QEI

The most distinctive procedure is the Classical Shadow procedure for quantum event identification problem.
By adapting the original Classical Shadow [10], we utilize the predicted state to compute the acceptance
probability of the two-outcome measurement set. This allows us to make predictions about which measure-
ments are most likely to have high acceptance probabilities.

Classical Shadow for QEI

Input: M = {M1,M2, . . . ,Mm}, and c copies of the quantum state ρ.
Output: An array O = {o1, o2, . . . , om/2}, where each oi is the index of a measurement with high
accepting probability.

1. For each copy from 1 to c:

(a) Apply a random unitary U from a fixed ensemble to the state ρ.

(b) Perform a computational basis measurement to obtain an outcome b.

(c) Store the result and the selected unitary U in classical memory.

(d) Compute a classical snapshot using the inverse channel M−1, defined as
M−1(U−1diag(b)U), where U−1 is the inverse of the unitary applied to the classical
description of the outcome b.

2. Aggregate all classical snapshots ρ̂i to form the classical shadow S(ρ; c).

3. For each measurement from M1 to Mm:

(a) Compute the trace Tr[Miρ̂i] for each snapshot in S(ρ; c).

(b) Calculate the median of Tr[Miρ̂i] across all snapshots, denoting this as the predicted
probability pi.

4. Select the top half of measurements based on their median probabilities pi to form the output
set O.

4 Result

In this section, we present plots derived from the simulation results and analyze the insights gained. The
coefficients for each test case vary across methods, ranks, and other factors, yielding insights regarding the
mechanisms of event identification.

4.1 Simulation Premise

We begin by introducing the tools that support our simulation. Qiskit, the primary framework for con-
structing the simulation circuits, is an open-source quantum computing software development platform. It
provides extensive tools for creating and managing quantum programs and facilitates execution on simula-
tors and actual quantum hardware. Our project is developed using Python 3.10.12, with data analysis and
visualization performed using packages like ’matplotlib’ and ’pandas’. A key aspect of our simulation is the
construction of the measurement set for the event learning problem. While detailed code is omitted here, we
provide a summary of the process for constructing these measurement sets. Full implementation is available
on our GitHub repository.
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For various problems, we employ two types of measurement sets. For the event-finding problem, the set
includes only one high-acceptance-probability outcome. In contrast, for quantum event identification, half
of the outcomes have high acceptance probabilities. Apart from the high-probability outcomes, both sets
share common attributes such as dimension, rank, number of measurements, and thresholds for high and
low probabilities:

• Dimension (d) : the dimension of the measurement

• The Number of Measurements (m): the number of measurements in one two-outcome measurement
set

• Rank (r) : the rank of the measurement

• High Probability (h pro) : threshold for high acceptance probability, where measurements satisfy
Tr[Miρ] > h pro

• Low Probability (l pro) : threshold for low acceptance probability, where measurements satisfy
Tr[Miρ] < l pro

These parameters enable us to construct varied measurement sets and analyze their impact on test outcomes.
Due to hardware limitations, the dimension (d) is fixed at 32 for QEI and at 64 for the quantum event finding
experiments. The number of measurements (m) ranges from 4 to 24 for QEI, and from 4 to 32 for quantum
event finding, enabling us to evaluate efficiency across various settings. For the rank, we select r = d/2,
based on theoretical and experimental results of Section 4.2.3, The effect of constraints of the classical
shadow, as it represents the worst case for our simulation.

In the quantum event finding simulations, we employ 50 distinct measurement sets, each run 100 times,
and derive success and failure rates from these trials. For QEI, we utilize 10 different measurement sets,
each tested 250 times. The success rate for each measurement Mi is computed over these 250 runs, and
the overall success rate of each measurement set is defined as the minimal success rate achieved among all
measurements Mi.

Beyond measurement adjustments, we enhance the flexibility and performance of our procedures by
tuning the coefficients α and c:

• α: Multiplier for the number of implementations of each measurement.

• c: Number of copies used in each run of the procedure.

These parameters are essential for controlling the dynamics of the experimental process.

4.2 Simulation Result

After outlining the premise of our simulation setting, we are now prepared to present the results. These are
divided into two main parts: ‘The Validity of the Bounds in the Event Finding Problem’, ‘The Efficiency
of Each Procedure for the Quantum Event Identification Problem.’ Additionally, there is a sub-part, ‘The
effect of constraints of the classical shadow’, to observe how ∥Mi∥2shadow effects the experimental result.
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4.2.1 The Validity of the Bounds in the Event Finding Problem

We examine the validity of the bounds ( Theorem 2.2 and Theorem 2.3) for the event finding problem, as
proposed in [2]. In our simulation, the results are consistent with theoretical expectations. The bounds for
both methods, blended and random, are valid for Case 1 and Case 2. However, the lower bounds for Case 1
are not tight for either method, and this issue is more significant for random measurements.

(a) Blended Measurement (b) Random Measurement

Figure 2: Comparison of Random and Blended Measurement in Case 1

In Figure 2, for the blended measurement, we observe that the experimental results and the lower bound
follow similar trends, despite a noticeable gap between the two lines. In contrast, for the random mea-
surement, the lower bound is positioned extremely close to the bottom of the figure. This is due to the
significantly large constant in the theorem (involving division by 1296 in (1 − ϵ)7/(1296(1 + β)3)), ren-
dering the lower bound for the random measurement barely visible. Nonetheless, both lower bounds remain
valid, though not sufficiently tight. Moreover, we can extract more information from the figure 2. The suc-
cess rate of the blended measurement is higher than that of the random measurement at every point, and its
decline in success rate is more gradual, suggesting that it outperforms the random measurement in our test
case.

(a) Blended Measurement (b) Random Measurement

Figure 3: Comparison of Random and Blended Measurement in Case 2
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In Figure 3, we compare the failure probabilities for the event finding problem in Case 2 using random
and blended measurements. As the figure shows, for both methods, the experimental results closely align
with the upper bound, indicating that the theoretical bound is sufficiently tight. Furthermore, the figure
demonstrates that the failure probability of random measurement is consistently higher than that of blended
measurement.

In our simulation case, the theoretical bounds in [2] are verified successfully. However, for the Case 1,
we could expect the lower bounds could be improved in the future. Given the reliability of the theorems and
procedures, we further utilize and adapt these two measurement methods for our self-defined problem, QEI.

4.2.2 The Efficiency of Each Procedure for the Quantum Event Identification Problem

In this section, we present the experimental results for Quantum Event Identification problem using different
procedures. Specifically, the procedures are divided into three categories: the random measurement proce-
dure, the derivative procedures from the blended measurement, and the Classical Shadow procedure. First,
we conduct a comprehensive comparison of all procedures.

Figure 4: Overall Success Rate Comparison

The results depicted in Figure 4 visually illustrate how each procedure’s success rate evolves as the
number of measurements increases from 4 to 24. Except for the Classical Shadow procedure, all meth-
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ods maintain success probabilities above the 50% reference line, demonstrating their relative effectiveness
for the QEI task. The Classical Shadow procedure, in contrast, appears consistently below 50%, raising
questions about its performance compared to simple guessing.

At first glance, this result may seem counterintuitive, as one would expect random guessing to average
around 50% success per measurement. The key lies in our evaluation methodology: rather than averaging
performance across all measurements, we focus on the single worst success rate within the entire mea-
surement set. This “worst-case” assessment disproportionately penalizes the Classical Shadow procedure,
pushing its observed success rate below the intuitive baseline of random guessing. Nevertheless, as indicated
in the figure, the Classical Shadow curve still remains above the red dashed line that represents the worst
possible scenario for random guessing. This observation confirms that while the Classical Shadow proce-
dure is disadvantaged by our worst-case metric, it does not truly perform worse than an entirely random
strategy.

Upon closer inspection, the different derivations of the blended measurement procedure exhibit nearly
identical success rate trends, with the exception of the three-outcome blended procedure. As depicted in
Figure 5, procedures derived from blended measurement demonstrate highly consistent trends, reflecting
the inherent stability of these approaches across varying test cases.

Figure 5: Comparison in Blended Measurement Derivations

Additional insights can be gleaned from Figure 6, which compares the blended and random measure-
ment procedures. In random measurement procedure, the initial success rate at around four measurements
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is notably higher—close to 0.8—indicating a strong initial advantage. However, as the number of measure-
ments increases, the success rate decreases more rapidly, with the regression fit approaching a near-zero
baseline. This suggests that while random measurements can yield high early success rates, its advantage
erodes more steadily as additional measurements are introduced.

In contrast, blended measurement procedure begins at a somewhat lower initial success rate (approx-
imately 0.7), but its regression model includes a positive baseline term (0.229). This implies that as the
number of measurements grows, the success rate stabilizes at a level significantly above zero. Consequently,
although the blended approach may not achieve the same high starting point as the random method, it offers
a more resilient long-term performance.

Random measurement procedure excels in initial performance but loses its advantage as the number
of measurements increases. In contrast, blended measurement procedure may not begin as strongly, yet it
maintains a more favorable success rate as the system scales. This difference in long-term behavior suggests
that the blended measurement procedure may be more robust in scenarios involving a larger number of
measurements. It is also worth noting that, in most practical settings, the number of measurements does not
exceed the dimension of the system, preventing the scenario from ever truly approaching an infinite regime
or dropping below the baseline of random guessing.

(a) Regression of Blended Measurement Procedure (b) Regression of Random Measurement Procedure

Figure 6: Regression and Comparison

Subsequently, we tried to adjust the factor α, mentioned in the premise of simulation, to see what might
be changed in the result. α is from 0.6 to 2.2, applied on three procedures- special blended, optimizing
blended, and interweave.

21



(a) m = 4 (b) m = 8

(c) m = 12 (d) m = 16

(e) m = 20 (f) m = 24

Figure 7: Comparison with Different α across All Numbers of Measurements

These six plots demonstrate that the effect of α diminishes as the number of measurements increases.
Furthermore, the impact of α becomes negligible once α exceeds 1. This phenomenon is most evident in
the plot where m = 4. Based on this result, we recommend setting α to 1 for any test case to achieve high
efficiency in a shorter time.

So far, we have presented the experimental results using only one copy. We also tested the case with
multiple copies to examine how increasing the number of copies affects the success rate. In the multiple-
copy tests, we used one to three copies for each approach, and the improvements were significant.
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(a) The Success Rate with 1 Copy

(b) The Success Rate with 2 Copies
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(c) The Success Rate with 3 Copies

Figure 8: Comparison with Different Numbers of Copies

In Figure 8, as the number of copies increases, the overall efficiency improves across all approaches.
Although our primary objective is to achieve high efficiency using only one copy per test, we present the
multi-copy cases to demonstrate the potential strength of these procedures. Furthermore, with up to three
copies, we observe consistent trends in the efficiencies of the methods. Notably, the results from the special
random procedure exhibit a sharper decline compared to those derived from blended measurements, and the
gap between each result widens as the number of copies increases.

4.2.3 The effect of constraints of the classical shadow

Due to the low success rate of the classical shadow procedure over one to three copies, we aim to determine
how many copies are needed for it to achieve a success rate similar to that of other methods. Also, we can
have a better observation of the effect of ∥Mi∥2shadow with higher copies. Thus, we incrementally increased
the number of copies until its performance approached the efficiency of the other approaches. As a result,
the figure 9 implies that using at least 20 copies allows us achieving the similar probability with others’.
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Figure 9: Classical Shadow Procedure with 20 Copies

Subsequently, considering the constraints of classical shadow tomography as mentioned in Chapter 1,
we tested measurement sets of different ranks to observe whether the rank affects our results when using only
one copy of the quantum state. In [10], the authors provide constraints for random Clifford measurements,
noting that the shadow norm is closely related to Tr(M2

i ), which can be approximately treated as the rank
of the measurement. With ranks ranging from 4 to 28 and the number of measurements ranging from 8 to
16, we ran the classical shadow procedure on a quantum event identification problem using 20 copies of the
state.
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Figure 10: Classical Shadow Procedure’s Results with Different Ranks

As shown in Figure 10, the experimental results follow the trend outlined by the constraint ∥Mi∥2shadow.
Recalling the expression from the introduction:

N ≥ O

(
logm

ϵ2
max

i
∥Mi∥2shadow

)
,

this equation depicts that more copies are required for higher shadow norms (i.e., higher-rank measure-
ments). In other words, lower-rank measurements should yield better results than higher-rank measurements
when using the same number of copies. As seen in the figure, the plot is symmetric with respect to rank,
which makes sense because ranks 4 and 28 are equivalent in significance for a dimension of 32. Therefore,
the most challenging measurement set corresponds to rank d/2, or rank 16, which we selected as our general
test measurements.

4.3 Discussion

In this work, we have simulated the Quantum Event Identification (QEI) problem using various measurement
procedures, validated the efficiency bounds established in [2], and illustrated the influence of shadow norms
described in [10].
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Our simulations show that most procedures maintain a stable success rate of approximately 60% at
m = d/2 (Figure 4), even when only a single copy is available in low-dimensional systems. By contrast,
the classical shadow procedure requires about 20 copies to achieve similar performance levels (Figure 9).
This result shows the potential of the blended measurement and random measurement to solve QEI.

Moreover, our results confirm the theoretical predictions for both blended and random measurement
strategies presented in [2]. While these theoretical bounds provide a robust upper limit for the efficiency of
case 2 in quantum event finding, they offer a relatively looser lower bound for case 1. Nevertheless, both
sets of bounds hold true and remain applicable within our simulation environment.

Additionally, we highlight the critical role of shadow norms introduced in [10]. Our findings indicate
that lower shadow norms—commonly associated with lower-rank measurements—lead to higher success
probabilities in quantum event identification, as evidenced in Figure 10. This relationship validates the
choice of measurement ranks in our QEI test setting.

In summary, our simulations reinforce the theoretical foundations of QEI, elucidate the significance
of measurement design and sample complexity, and emphasize the central influence of shadow norms on
success rates.

4.4 Conclusion

We introduced the Quantum Event Identification (QEI) problem as an approach to efficiently identify mea-
surements with high success rates. By leveraging a promise gap and focusing on individual measurement
predictions, QEI presents a promising framework that may enable reduced sample complexity compared to
shadow tomography.

Our simulations compares the potential of different strategies of solving QEI. Blended measurement
procedure demonstrate the advantage in high number of measurements setting, and random measurement
procedure excels at the low number of measurement setting. On the other hand, classical shadow can not
perform properly with the relatively low number of copies used in our simulation.

To extend this research, several directions offer promising prospects. First, although our simulations
primarily focused on low-dimensional settings due to hardware limitations, future work can explore higher-
dimensional regimes and larger measurement counts. Leveraging increased computational resources and
longer simulation periods will help verify whether QEI and the associated procedures maintain stable per-
formance at these expanded scales.

In addition, theoretical approaches to problems related to QEI, such as the original shadow tomogra-
phy [1] and pretty-good tomography, which relax the success criterion of prediction to achieve linearly
scaling in sample complexity [15], can be adapted to QEI and tested in future works. By comparing com-
plexities, sample requirements, and performance trade-offs between these methods on QEI, we may gain
valuable insights or refine theoretical bounds, ultimately guiding the development of more practical, scal-
able quantum event identification techniques.

Finally, integrating machine learning methodologies provides another exciting direction. Techniques
like Neural-Shadow Quantum State Tomography (NSQST) [16] and Neural Adaptive Quantum Tomography
(NAQT) [17] demonstrate how machine learning can enhance noise resilience, reduce sample complexity,
and dynamically optimize measurement strategies. Adopting and adapting these methods in the QEI setting
may pave the way for more scalable, robust, and efficient quantum procedures that complement and extend
our current findings.
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5 Appendix

A The lower bound of the sample complexity of Classical Gapped Shadow
Tomography

In this section, we give the proof of the lower bound of Problem 1.7 is Ω(log(m/δ)).
Using Theorem A.1, which provides the sample complexity required to distinguish between two distribu-

tions, we treat the thresholds Tr[Miρ] > c and Tr[Miρ] < c− ϵ in classical gapped shadow tomography 1.7
as distinct distributions. This interpretation directly leads to the derivation of the sample complexity for
predicting a single measurement outcome.

Theorem A.1 (distinguishing two distributions, [18]). Successfully distinguishing between two distributions
p, q with probability ≥ 1−∆ requires Θ

(
d2H(p, q)−1 log(1/∆)

)
samples. d2H(p, q) is the Squared Hellinger

distance between p and q defined as

d2H(p, q) =
1

2

∑
i∈[n]

(√
pi −

√
qi
)2

= 1−
∑
i∈[n]

√
piqi

.

Lemma A.2 formalizes the sample complexity of prediction for a single measurement outcome, laying
the groundwork for further proofs.

Lemma A.2. Given an unknown diagonal density matrix ρ and a diagonal measurements M , along with
real constant values ϵ, c ∈ [0, 1], assume that we are promised that either Tr[Mρ] ≥ c or Tr[Mρ] ≤ c − ϵ.
We can discern which case it is with a success rate 1−∆ with c = Θ

(
log
(
1/∆

))
copies.

Proof. As ρ, M are diagonal, the best way to discern the cases is to measure ρ with M and getting the
probability distribution (Tr[Mρ], 1 − Tr[Mρ]). By Theorem A.1, since dH is constant, to distinguish the
two distributions p = (c, 1−c) and q = ((c− ϵ), 1− (c− ϵ)) with a success rate 1−∆, c = Θ

(
log
(
1/∆

))
copies are sufficient and necessary.

Next, building on Lemma A.2, we give a lower bound of the sample complexity of Problem 1.7 with
classical input in Theorem A.3.

Theorem A.3 (The Lower Bound of Classical Gapped Shadow Tomography). We need k = Ω
(
log
(
m/δ

))
copies of ρ to solve Problem 1.7 with a success probability of 1− δ.

Proof. Assume the unknown state is
ρ = ρ1 ⊗ · · · ⊗ ρm,

where each ρi are either 1
3 |0⟩⟨0|+

2
3 |1⟩⟨1| or 2

3 |0⟩⟨0|+
1
3 |1⟩⟨1|, and the measurements are

Mi = I⊗(i−1) ⊗ |0⟩⟨0| ⊗ I⊗(m−i).

Since {Mi} commute with each other, the measurement outcomes of each Mi are independent from
each other. Therefore, with k copies, the probability that we correctly classify Mi is

(1−∆)m ≥ 1− δ.
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Taking the natural logarithm of both sides we get

m log(1−∆) ≥ log(1− δ).

Using Taylor expansion for small ∆ and small δ, we obtain the approximation:

−m∆ ≥ −δ.

Rearranging this inequality gives:

∆ ≤ δ

m
.

Since the sample complexity of prediction for a single measurement outcome is Θ
(
log
(
1/∆

))
by Lemma A.2,

we obtain:

k = Ω

(
log

(
m

δ

))
.
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